EE28017 Cyber Physics Application in Industrial IoT Cr 1

Course Code	:	EE28017
Course Title	:	Cyber Physics Application in Industrial IoT
Number of Credits	:	1
Pre-requisites (Course Code)	:	Nil
Course Type	:	Vocational

Course Objective:

The students will utilize the principles of Cyber-Physical Systems (CPS) and Internet of Things (IoT) to develop applications, implement IoT applications by selecting appropriate hardware and software platform and also Develop IoT applications using open-source platforms.

Course Outcomes: After successful completion of this module, students should be able to:

CO1 : Basics of cyber physics components

CO2: Understanding of sensors and actuators

CO3: Layout diagram of open source microcontroller board

CO4: Understanding of analog and digital I/O for cyber-physics

CO5: Understanding of different protocols for IoT connectivity

CO6: Basic architecture for IoT enabled Cyber Physics

Course Contents:

1.CYBER PHYSICAL SYSTEM.(THEORY)

- 1. CPS Realworld.
- 2. Design and Validation of CPS.
- 3. Smart city application CPS.
- 4. CPS Hardware Platforms(Process, Sensors and Actuators).

2.Industry 4.0.

- 1. IOT Fundamentals and protocols including layers.
- 2. Sensor and Interfacing.

Hands on Practice:

- 1. Architecture and pin diagram of Arduino UNO/MEGA and ESP8266
- 2. IDE installation for open source C++ or Phython
- 3. Analog and Digital voltage sensing and processing through Firmware
- 4. Analog and Digital voltage based actuator through Firmware
- 5. Display OLED/Seven segment integration through IDE
- 6. PCB Design Concept and implementation with uC.
- 7. Implementation of UI/UX through RestAPI based Thingspeak
- 8. DATA logging and Generating CSV through RestAPI
- 9. Writing a Firmware for ESP-8266 or NODEMCU(programming based knowledge)
- 10. IoT based transformer / condition monitoring system

References:

- 1. Designing the Internet of Things, Adrian McEwen (Author), Hakim Cassimally
- 2. Asoke K Talukder and Roopa R Yavagal, "Mobile Computing," Tata McGraw Hill, 2010.
- 3. Computer Networks; By:Tanenbaum, Andrew S; Pearson Education Pte. Ltd., Delhi, 4th Edition
- 4. Data and Computer Communications; By:Stallings, William; Pearson Education Pte. Ltd., Delhi, 6th Edition
- 5. F. Adelstein and S.K.S. Gupta, "Fundamentals of Mobile and Pervasive Computing," McGraw Hill, 2009.

EE28019 Industrial Control and Remote Monitoring Cr 1

Course Code	:	EE28019
Course Title	:	Industrial Control and Remote Monitoring
Number of Credits	:	1
Pre-requisites (Course Code)	:	Nil
Course Type	:	Vocational

Course Objective:

To provide hands on experience in developing Industrial Control and remote monitoring by using PLC (Programmable logic Controller), thus by utilizing it in Process control applications

Course Outcomes: After successful completion of this module, students should be able to:

CO1: Know about typical components of a Programmable Logic Controller

CO2: Know the concept of Electrical ladder logic and its relationship to PLC instructions

CO3: Understand the concept of digital electronics and data acquisition

CO4: Program PLC logical switching circuits for industrial applications

CO5: Choose and utilize Timer, Counter, and other intermediate programming functions

CO6: Design and program automated industrial production line

Course Contents:

1. Programmable logic Controller SYSTEM. (THEORY)

- 1. Introduction to Industrial Automation.
- 2. Introduction to PLC programmable logic controller
- 3. PLCs & related software and its major Components
- 4. Relay logic Hardware Platforms (Switches, Sensors and Actuators).
- 5. Study of Contactors, Timers, Counter and Comparator

2. Human Machine interface:

- 1. Introduction to HMI Communication with PLC
- 2. HMI tags and Assignments
- 3. Project on Industrial load sequential feedback control Using PLC HMI

Hands on Practice:

- 1. Introduction of PLC SOFTWARE as TIA Portal
- 2. Ladder Programming for Basic gates logics by using SPST Contacts
- 3. Ladder Programming on SPDT
- 4. Latching Concept and related Latching program
- 5. Study of program memory and Programming on Memory Bits
- 6. Study of TIMER BLOCKs and its Programming
- 7. Introduction to COMPARATOR BLOCK and its Programming
- 8. Introduction to COUNTER BLOCK and its Types with Programming
- 9. Project on Industrial Load OFF/ON control Using PLC and HMI
- 10. Introduction to analog Logic in PLC and its Programming

References:

- 1. Programmable logic Controller by Vijay R. Jadhav KHANNA PUBLISHERS Second Edition 2012
- 2. Industrial Automation Using PLC,SCADA and DCS by R.G Jamkar Laxmi Publications Private Limited;
- 3. PLC and SCADA by Prof Rajesh Mehra and Er. Vikrant Vij Published by University Science Press, 1st
- 4. Programmable logic Controller: Programming methods and Applications By John R Hackworth and Frederick D. Hackworth Jr. PEARSON Edition: 1st Edition, 2006

MATLAB for Engineers

Course Code	EE28021
Course Title	MATLAB for Engineers
Number of Credits	0-0-2-1
Course Type	Vocational Elective

Course Objectives:

The prime focus of this course is to provide the students a basic understanding of the MATLAB coding and to solve mathematical and engineering problems numerically relevant to the academic and industrial applications.

Course Outcomes:

- ✓ **CO1:** Understanding of the MATLAB environment as a programming tool.
- ✓ **CO2:** Ability to know and execute the MATLAB commands and features to the particular problem definition.
- ✓ **CO3:** Apply the concepts of the MATLAB to write programming for the mathematical problems such as finding the roots of the equation.
- ✓ **CO4:** Being able to analyse the errors in the post-processing and display the results graphically.
- \checkmark CO5: Write the algorithm for the solution of fundamental partial and ordinary differential equations.
- \checkmark CO6: Develop the skill to analyze and write the algorithms to solve the complex engineering and industry standard problems.

Course Contents:

Lab-1:

Introduction to the course, software description, installation and basics of MATLAB as the programming tool.

Lab-2:

Demonstration and practice of the basic commands and features of the MATLAB (Do loop, If-else loop, While loop etc, basic plotting).

Lab-3:

Formulate a Matlab algorithm for the solution of algebraic and transcendental equations using bi-section method.

Lab-4:

Formulate a Matlab algorithm for the solution of algebraic and transcendental Equations using Regula-Falsi method.

Lab-5:

Formulate a Matlab algorithm for the solution of algebraic and transcendental Equations using Newton Raphson method.

Lab-6:

Performing matrix inversion and solving eigen-value problems using Gauss-Jordan Method.

Lab-7:

Formulate a Matlab algorithm for the interpolation using Newton's forward / backward interpolation formula.

Lab-8:

Numerical solution of ordinary differential equations using Taylor series method and Euler's Method.

Lab-9:

Numerical solution of partial differential equations: Solution to Laplace equation

Lab-10:

Scheduling algorithm implementation using MATLAB.

Assessment Scheme:

Activity	Marks
Daily performance	50
Lab Record	30
Examination	20
Total	100

Text Books:

- 1. S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and Scientists, Indian Edition, McGraw Hill, 2012.
- 2. V. Rajaraman, Computer Oriented Numerical Methods, PHI, 2002.
- 3. David Houcque, Introduction to Matlab for engineering students, Northwestern University.